x^2+16x^2=208

Simple and best practice solution for x^2+16x^2=208 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+16x^2=208 equation:



x^2+16x^2=208
We move all terms to the left:
x^2+16x^2-(208)=0
We add all the numbers together, and all the variables
17x^2-208=0
a = 17; b = 0; c = -208;
Δ = b2-4ac
Δ = 02-4·17·(-208)
Δ = 14144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14144}=\sqrt{64*221}=\sqrt{64}*\sqrt{221}=8\sqrt{221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{221}}{2*17}=\frac{0-8\sqrt{221}}{34} =-\frac{8\sqrt{221}}{34} =-\frac{4\sqrt{221}}{17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{221}}{2*17}=\frac{0+8\sqrt{221}}{34} =\frac{8\sqrt{221}}{34} =\frac{4\sqrt{221}}{17} $

See similar equations:

| 4(n-6)+2n=3n+3 | | 4x-2(x-4)=-7= | | 3+x(2x-5)=78 | | c/3+10=12 | | (2x+1)^(1/3)=-5 | | 24y=15 | | 17x^2=208 | | 7–2v=3 | | 10w+8=6w | | -16x^2+10x+10=5 | | (8-d)(d+2)-(7-d)(d+1)=0 | | x+(x-50)=25 | | 8x12/4-x=2 | | (-1+2x)-2x=-1 | | 35/5=7/x | | 2w–3=3 | | y-4+15= 18 | | 3(-2v+7)=6v-14 | | 5(7x+1)-35=215 | | (w+6)/12=-4 | | (2x-1)-2x=-1 | | -0,5*(3*x^2-12)=0 | | -0,5·(3·x^2-12)=0 | | T=c+c(20)(1/10) | | x-6=5x-22 | | 2=3u–1 | | y➗3=6 | | 2y-⅗=½ | | 3.4^(2x+3)=8.5 | | -8x=8+3(x-2)=-3x+2 | | 4x(-3)=5 | | 3+3s=6 |

Equations solver categories